BALANCE BEAM

Name: _____

Use the moment formula to calculate the required weights and distances to keep the plank balanced in the problems below.

WEIGHT X ARM (DISTANCE) = MOMENT

If a 2-pound weight is located at point X and 4 pounds at point Y, how much weight must be located at point Z in order to balance the plank?

If a 4-pound weight is located at point X and 5 pounds at point Y, how much weight must be located at point Z in order to balance the plank?

If a 4-pound weight is placed 75 inches right of the fulcrum along with a 6-pound weight 25 inches to the right of the fulcrum, what weight must be placed 50 inches left of the fulcrum to balance the plank?

If a 3-pound weight is placed 60 inches to the right of the fulcrum along with a 10-pound weight 30 inches to the left of the fulcrum, how much weight needs to be located 15 inches to the right of the fulcrum to keep the plank balanced?

A 4-pound weight is placed 50 inches to the left of the fulcrum, with a 6-pound weight 25 inches to the left as well.

How far must a 10-pound weight be placed to the right of the fulcrum to keep the plank balanced?

If a 3-pound weight is placed 150 inches to the right of the fulcrum with a 6-pound weight 100 inches to the left, how far should a 4-pound weight be placed to the right of the fulcrum to keep the plank balanced?